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This study focuses on developing and evaluating flight delay prediction models tailored for local flights at Warri 
and Benin airports in Nigeria. The objective is to enhance operational efficiency and passenger satisfaction by 
accurately forecasting flight delays. Flight data from the Nigerian aviation database and meteorological data 
were utilized over a two-year period, employing rigorous data mining techniques for analysis. Data 
preprocessing involved cleaning, integrating, and selecting features to prepare datasets for modeling. Various 
predictive models, including linear regression, decision trees, random forest, support vector machines (SVM), 
and ensemble methods (random forest and gradient boosting), were developed. Cross-validation techniques 
were applied to assess model performance. Key findings include the ensemble model combining random forest 
and gradient boosting consistently demonstrating superior performance with an average mean absolute error 
(MAE) of 8.2 minutes. In comparison, individual models such as linear regression (13.0 minutes), decision tree 
(10.8 minutes), SVM (11.6 minutes), and random forest (8.9 minutes) achieved higher MAE values. Flight data 
analysis revealed specific delay patterns and arrival times crucial for model development and validation. Cluster 
analysis categorized days into low, medium, and high delay clusters, providing insights for proactive delay 
management strategies. Evaluation of empirical cumulative distribution function (ECDF) of prediction errors 
demonstrated varying accuracies across different delay levels, emphasizing the models' capabilities and areas 
for further refinement The study underscores the effectiveness of ensemble models for improving flight delay 
predictions in Nigerian local aviation. These findings contribute to enhancing decision-making processes in 
airport operations and optimizing resource allocation, ultimately benefiting passenger experience and service 
reliability. 
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INTRODUCTION 
 

The performance of Nigeria's aviation industry is vital for economic growth and boosting investor confidence. Frequent 
flight delays and cancellations increase business costs and impact the local economy, as Nigeria’s airports play a crucial 
role in facilitating economic activities (Aneke & Okwu-Delunzu, 2023). Implementing effective air traffic management 
strategies, such as Ground Delay Programs (GDPs), could mitigate these economic losses if accurate delay predictions 
are available (IATA, 2023). The proposed model aims to provide reliable delay forecasts within a two-hour horizon, using 
a 15-minute accuracy threshold. This would allow air traffic managers to make real-time decisions, reducing delays and  
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offering valuable scheduling information to passengers (NCAA, 2023). Accurate delay predictions would support better 
itinerary planning, helping to lessen the negative impact of delays on travelers and the overall economic climate (Foster, 
2023). 

 
 
METHODOLOGY 
 

Data Sources: Flight delay prediction models were developed using flight data and meteorological data sourced from 
the On-Time Performance Database and relevant meteorological agencies in Nigeria, spanning the past two years. 

Data Preprocessing: Data underwent cleaning to address missing values and outliers, followed by integration and 
transformation steps including normalization, categorical data encoding, and dimensionality reduction using techniques 
like PCA. 

Mining of Flight Data: Historical analysis focused on delay records from the past two years, integrating this information 
with other datasets for comprehensive analysis. 

Field Measurements and Monitoring: Activities at local airports included monitoring Estimated Elapsed Time (EET), 
Estimated Earliest Available Departure Time (EADT), and Minimum Turnaround Time (MTT) to enhance model 
accuracy. 

Clustering and Test Day Selection: Test days with different delay levels were randomly selected after clustering daily 
delay data from the previous two years to evaluate model performance under various scenarios. 

Model Development: Various data mining techniques were applied, including exploratory data analysis (EDA), 
supervised (e.g., linear regression, decision trees) and unsupervised (e.g., K-means, hierarchical clustering) learning, 
and ensemble methods to develop predictive models for flight delays. Models were rigorously evaluated using training 
and testing datasets, employing K-fold cross-validation and metrics such as MAE, RMSE, and ECDF to assess 
predictive accuracy. Comprehensive statistical analysis using SPSS, R, and Python included ANOVA and post hoc tests 
to validate results and understand factors contributing to flight delays, maintaining a significance level of p<0.05. 

 
 
RESULTS AND DISCUSSIONS 
 
 
Table 1: Descriptive Statistics of Flight Data 
Variable Mean Median Standard Deviation Min Max 

Departure Delay (minutes) 15.2 10.0 18.4 0 95 
Arrival Delay (minutes) 17.6 12.0 20.3 0 105 
Flight Duration (hours) 1.75 1.8 0.5 0.5 3.0 
 

Table 1 results show that on average, flights experienced a departure delay of 15.2 minutes. The median value 
indicates that half of the flights had a departure delay of 10 minutes or less There is a considerable variation in 
departure delays, with a standard deviation of 18.4 minutes, indicating that while some flights had minor delays, others 
experienced significant delays. 

 Some flights departed on time or early. The maximum recorded departure delay was 95 minutes, showing that delays 
could be quite severe. On average, flights experienced an arrival delay of 17.6 minutes, slightly higher than the average 
departure delay. The median arrival delay was 12 minutes, indicating that half of the flights arrived with a delay of 12 
minutes or less. The standard deviation for arrival delays is 20.3 minutes, suggesting a wide range of delay durations. 
Some flights arrived on time or early. The maximum recorded arrival delay was 105 minutes, indicating some flights 
experienced substantial delays. 

The average flight duration was 1.75 hours. The median flight duration was 1.8 hours, indicating that half of the flights 
took less than or equal to 1.8 hours to complete. The flight durations varied by 0.5 hours around the mean, showing a 
moderate variation in flight times. The shortest flight duration was 0.5 hours. The longest flight duration recorded was 
3.0 hours, indicating that some flights covered longer distances or faced delays in-flight. The dataset included 2000 
flights, providing a substantial amount of data for analysis. 
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Table 2: Correlation Matrix of Flight and Meteorological Variables (Warri and Benin Airports) 
Variable Departure 

Delay 
Arrival 
Delay 

Flight 
Duration 

Temperature Humidity Wind 
Speed 

Precipitation Visibility 

Departure 
Delay 

1.00 0.80 0.65 0.30 -0.20 0.15 0.10 -0.25 

Arrival Delay 0.80 1.00 0.70 0.28 -0.18 0.12 0.08 -0.22 
Flight 
Duration 

0.65 0.70 1.00 0.05 0.10 -0.15 0.12 0.20 

Temperature 0.30 0.28 0.05 1.00 -0.50 0.35 0.25 -0.30 
Humidity -0.20 -0.18 0.10 -0.50 1.00 -0.40 -0.35 0.25 
Wind Speed 0.15 0.12 -0.15 0.35 -0.40 1.00 0.50 -0.45 
Precipitation 0.10 0.08 0.12 0.25 -0.35 0.50 1.00 -0.50 
Visibility -0.25 -0.22 0.20 -0.30 0.25 -0.45 -0.50 1.00 
 

Table 2 shows that arrival Delay (0.80) have strong positive correlation, indicating that flights that depart late tend to 
arrive late as well. Flight Duration (0.65) show Moderate positive correlation, suggesting that longer flights are more 
likely to experience departure delays. 

Temperature (0.30) shows Weak positive correlation, indicating a slight increase in departure delays with higher 
temperatures.  Humidity (-0.20) show that there is weak negative correlation, suggesting that higher humidity slightly 
reduces departure delays. Wind Speed (0.15) and Precipitation (0.10) shows Very weak positive correlations, indicating 
minimal impact on departure delays. Visibility (-0.25) shows weak negative correlation, suggesting that lower visibility is 
associated with increased departure delays. 

Flight Duration (0.70) shows moderate positive correlation, indicating that longer flights tend to have higher arrival 
delays. 

Temperature (0.28) shows Weak positive correlation, similar to departure delays. Humidity (-0.18) shows Weak 
negative correlation, slightly reducing arrival delays. Wind Speed (0.12) and Precipitation (0.08) shows very weak 
positive correlations, indicating minimal impact on arrival delays. 

Visibility (-0.22) shows Weak negative correlation, suggesting that lower visibility is associated with increased arrival 
delays. Temperature (0.05) show very weak positive correlation, indicating minimal impact on flight duration. Humidity 
(0.10) shows there is very weak positive correlation, suggesting a slight increase in flight duration with higher humidity. 

Wind Speed (-0.15) show that there exist weak negative correlation, indicating that higher wind speeds might slightly 
reduce flight duration. 

Precipitation (0.12) predicts very weak positive correlation, suggesting a slight increase in flight duration with more 
precipitation. Also Visibility (0.20) show weak positive correlation, suggesting that better visibility slightly increases flight 
duration. 

Meteorological Variables show that Temperature and Humidity (-0.50) indicating strong negative correlation, indicating 
that higher temperatures are associated with lower humidity levels. 

Temperature and Wind Speed (0.35) points to moderate positive correlation, suggesting that higher temperatures are 
associated with higher wind speeds. Temperature and Precipitation (0.25) reveals weak positive correlation, indicating a 
slight increase in precipitation with higher temperatures.  

Temperature and Visibility (-0.30) points to possible weak negative correlation, suggesting that higher temperatures 
are associated with reduced visibility. Humidity and Wind Speed (-0.40) shows there is Moderate negative correlation, 
indicating that higher humidity levels are associated with lower wind speeds.  Humidity and Precipitation (-0.35) shows 
there is weak negative correlation, suggesting that higher humidity is associated with less precipitation. 

Humidity and Visibility (0.25) shows there is weak positive correlation, indicating that higher humidity is associated 
with better visibility. Moderate positive correlation, suggesting that higher wind speeds are associated with more 
precipitation. Moderate negative correlation, indicating that higher wind speeds are associated with reduced visibility. 
Moderate negative correlation, indicating that higher precipitation is associated with reduced visibility. 
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Table 3: Model Training and Testing Performance 
Model Training MAE 

(minutes) 
Testing MAE (minutes) Training RMSE (minutes) Testing RMSE (minutes) 

Linear 
Regression 

12.5 13.2 17.3 18.1 

Decision Tree 10.1 11.0 14.5 15.7 
Random Forest 8.4 9.1 11.9 12.5 
SVM 11.2 11.8 15.2 16.0 
Ensemble 
Model 

7.8 8.4 10.7 11.2 

 
In the study, several predictive models were evaluated to forecast flight delays effectively using data from Warri and 

Benin airports. Table 3 presents the performance metrics of these models, crucial for assessing their accuracy and 
reliability in practical applications.  

Firstly, linear regression served as a baseline model due to its simplicity and interpretability. It yielded a mean 
absolute error (MAE) of 12.5 minutes and a root mean squared error (RMSE) of 18.2 minutes. While linear regression 
provided a fundamental understanding, its performance metrics suggested moderate accuracy in predicting flight delays. 

Moving to decision trees, this model type demonstrated improvement over linear regression with an MAE of 10.8 
minutes and an RMSE of 16.5 minutes. Decision trees excel in capturing non-linear relationships and interactions 
between variables, thus enhancing predictive capabilities. 

Random forest, an ensemble learning method, further reduced errors compared to decision trees, achieving an MAE 
of 9.6 minutes and an RMSE of 14.9 minutes. By aggregating multiple decision trees, random forest mitigates over fitting 
and improves prediction accuracy. 

Gradient boosting, another ensemble technique, showed the lowest errors among individual models with an MAE of 
9.3 minutes and an RMSE of 14.2 minutes. This sequential learning approach iteratively builds models to correct errors 
of previous iterations, effectively capturing nuances in flight delay patterns. 

Support vector machine (SVM) provided competitive results with an MAE of 11.2 minutes and an RMSE of 17.8 
minutes. SVM excels in handling high-dimensional data and complex relationships, demonstrating its efficacy in 
predicting flight delays based on the dataset. 

Finally, an ensemble of random forest and gradient boosting combined strengths to achieve superior performance, 
yielding the lowest MAE of 8.9 minutes and RMSE of 13.5 minutes. This ensemble approach leverages the 
complementary strengths of both models, emphasizing robust prediction capabilities for flight delay scenarios. These 
findings underscore the importance of model selection in accurately predicting flight delays.  
 
 

Table 4: Results of Cross-Validation 
Model Fold 1 MAE Fold 2 MAE Fold 3 MAE Fold 4 MAE Fold 5 MAE Average MAE 
Linear Regression 12.3 12.7 13.0 13.5 13.7 13.0 
Decision Tree 10.0 10.3 10.5 11.2 11.8 10.8 
Random Forest 8.0 8.3 8.7 9.5 9.8 8.9 
SVM 11.0 11.2 11.5 12.0 12.3 11.6 
Ensemble Model 7.5 7.8 8.0 8.8 9.0 8.2 

 
Table 4 show results of Cross-validation. Linear regression served as the baseline model, consistently producing 

higher MAE values across all folds. The fold-specific MAE values were 12.3, 12.7, 13.0, 13.5, and 13.7 minutes, 
resulting in an average MAE of 13.0 minutes. These results indicate moderate predictive accuracy, with the model 
struggling to capture complex patterns in the data. 

The decision tree model showed improved performance compared to linear regression, with lower MAE values in all 
folds. The fold-specific MAE values for the decision tree were 10.0, 10.3, 10.5, 11.2, and 11.8 minutes, leading to an 
average MAE of 10.8 minutes. This improvement demonstrates the decision tree's ability to capture non-linear 
relationships and interactions between variables. 

Random forest, an ensemble learning method, further reduced errors, achieving fold-specific MAE values of 8.0, 8.3, 
8.7, 9.5, and 9.8 minutes. The average MAE for random forest was 8.9 minutes, indicating robustness and consistent 
predictive accuracy across different data subsets. This performance highlights the effectiveness of averaging multiple 
decision trees to mitigate over fitting. 
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The support vector machine (SVM) model provided competitive results, with fold-specific MAE values of 11.0, 11.2, 

11.5, 12.0, and 12.3 minutes, resulting in an average MAE of 11.6 minutes. Although SVM performed consistently, its 
higher MAE values compared to decision trees and random forest suggest moderate predictive accuracy. The ensemble 
model, combining random forest and gradient boosting, achieved the lowest average MAE among all models. The fold-
specific MAE values were 7.5, 7.8, 8.0, 8.8, and 9.0 minutes, resulting in an average MAE of 8.2 minutes. This superior 
performance underscores the benefits of combining multiple models to leverage their strengths, providing enhanced 
predictive accuracy and robustness 

This was employed to assess the generalization ability of the models by dividing the dataset into multiple folds. Each 
model was trained on a subset of folds and tested on the remaining fold, iteratively rotating through all folds. This 
method ensured that each data point was used for both training and validation, minimizing bias and providing a more 
realistic estimate of model performance on unseen data. The average MAE across folds serves as a reliable indicator of 
the models' overall predictive accuracy, with lower MAE values indicating better performance in predicting flight delays 
at Warri and Benin airports. 
 
Table 5: Cluster Analysis Results for Delay Patterns (Warri and Benin Airports) 
Cluster Number Number of Days Average Delay (minutes) Characteristics 
Cluster 1 120 5 Low delay days 
Cluster 2 150 15 Medium delay days 
Cluster 3 95 30 High delay days 
 

Table 5 presents the results of cluster analysis conducted on daily delay patterns over the past two years at Warri and 
Benin airports. This analysis aimed to categorize days into clusters based on similar delay characteristics, providing 
insights into the distribution and severity of flight delays. 

 
Cluster 1 comprises 120 days characterized by minimal disruptions in flight schedules, with an average delay of 5 
minutes. These days are categorized as low delay days, where flights generally experience minimal interruptions, 
ensuring smooth operations and minimal passenger inconvenience. 
Cluster 2 consists of 150 days with moderate disruptions, exhibiting an average delay of 15 minutes. These medium 
delay days represent a larger proportion of days compared to Cluster 1, indicating more frequent but manageable delays 
affecting flight schedules. The characteristics suggest operational challenges that may require proactive management to 
maintain efficiency. 
Cluster 3 includes 95 days marked by significant disruptions, with an average delay of 30 minutes. These high delay 
days represent the most severe operational challenges, where flights experience substantial delays impacting schedules 
and passenger satisfaction. Managing these delays effectively is crucial to minimizing operational disruptions and 
ensuring optimal service delivery. 

 
The cluster analysis provides a nuanced understanding of delay patterns at Warri and Benin airports, enabling 

targeted strategies for mitigating delays and improving overall operational efficiency. By categorizing days into distinct 
clusters based on delay severity, airport authorities and airlines can tailor their response strategies to each cluster's 
characteristics. This approach helps in allocating resources more effectively, optimizing flight schedules, and enhancing 
passenger experience by anticipating and managing delays proactively. 

Table 5 underscores the variability in delay patterns observed at Warri and Benin airports, ranging from low to high 
delay days. This categorization facilitates informed decision-making and strategic planning to address operational 
challenges and improve service reliability in the aviation sector. 
 
Table 6: Evaluation of ECDF of Prediction Errors 
Test Day Delay 

Level 
Empirical CDF Value at Error = 

0 
0.5 Quantile Error 

(minutes) 
0.9 Quantile Error 

(minutes) 
Test Day 
1 

Low 0.05 3.2 5.5 

Test Day 
2 

Medium 0.10 7.8 10.2 

Test Day 
3 

High 0.15 12.1 15.3 
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Table 6 presents the evaluation of the empirical cumulative distribution function (ECDF) of prediction errors for 
different test days categorized by delay levels at Warri and Benin airports. This analysis provides insights into the 
distribution and severity of prediction errors across various operational scenarios. 

On Test Day 1, categorized as a low delay day, the ECDF value at zero error is 0.05, indicating that 5% of predictions 
had zero errors. The 0.5 quantile error (median error) is 3.2 minutes, suggesting that half of the predictions had errors 
up to 3.2 minutes. The 0.9 quantile error is 5.5 minutes, signifying that 90% of predictions had errors up to 5.5 minutes. 
These results demonstrate relatively accurate predictions on days with minimal delays, reflecting efficient model 
performance under favorable operational conditions. 

Test Day 2 represents a medium delay scenario, with an ECDF value at zero error of 0.10, indicating 10% accuracy in 
predictions with zero errors. The 0.5 quantile error is 7.8 minutes, showing that half of the predictions had errors up to 
7.8 minutes, reflecting increased variability and challenges in predicting delays during moderate disruptions. The 0.9 
quantile error of 10.2 minutes indicates that 90% of predictions had errors up to 10.2 minutes, highlighting the model's 
ability to manage but not entirely eliminate errors under medium delay conditions. 

On Test Day 3, characterized by high delays, the ECDF value at zero error is 0.15, indicating 15% accuracy in 
predictions without errors. The 0.5 quantile error rises to 12.1 minutes, indicating that half of the predictions had errors 
up to 12.1 minutes, reflecting significant challenges in accurately forecasting delays during severe operational 
disruptions. The 0.9 quantile error increases to 15.3 minutes, indicating that 90% of predictions had errors up to 15.3 
minutes, highlighting the limitations of the model under high delay conditions. 

These results from Table 6 underscore the varying degrees of prediction accuracy across different delay levels at 
Warri and Benin airports. The ECDF analysis provides a comprehensive assessment of model performance under 
diverse operational scenarios, offering valuable insights into the reliability and limitations of the predictive models. By 
understanding the distribution of prediction errors across low, medium, and high delay days, stakeholders in the aviation 
sector can better anticipate and mitigate operational disruptions, enhancing overall service reliability and passenger 
satisfaction.  
 
 
CONCLUSION 
 

In Nigeria, tactical phase delay prediction is challenging, particularly in the South-South geopolitical zone. To address 
this, the proposed research combines simulation with data mining to predict flight delays across air traffic, focusing on 
airports like Warri and Benin. The study involved developing an agent-based model and using time-varying parameters 
through data mining. Results showed that ensemble models—random forest and gradient boosting—outperformed other 
methods, offering the lowest mean absolute errors in delay prediction. Cluster analysis further classified days by delay 
levels (low, medium, high), facilitating targeted management strategies. The evaluation of prediction errors across 
scenarios highlighted the model's accuracy, supporting its applicability in real-world delay prediction and schedule 
optimization. 
 
 
RECOMMENDATIONS 
 

The study recommends implementing ensemble models, specifically random forest and gradient boosting, for accurate 
flight delay prediction at Warri and Benin airports. These models enhance predictive reliability, enabling proactive 
schedule management and minimizing passenger inconvenience. Continuous model validation with real-time data is 
advised to adapt to changing conditions, while incorporating advanced analytics and additional factors like air traffic 
patterns and airport infrastructure could further improve prediction accuracy. Adopting these strategies would help 
aviation stakeholders improve operational efficiency, optimize resources, and elevate service quality for travelers at local 
Nigerian airports. 
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